Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.232
Filtrar
1.
Luminescence ; 39(4): e4745, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644416

RESUMO

This study introduces a novel chemiluminescence (CL) approach utilizing FeS2 nanosheets (NSs) catalyzed luminol-O2 CL reaction for the measurement of three pharmaceuticals, namely venlafaxine hydrochloride (VFX), imipramine hydrochloride (IPM), and cefazolin sodium (CEF). The CL method involved the phenomenon of quenching induced by the pharmaceuticals in the CL reaction. To achieve the most quenching efficacy of the pharmaceuticals in the CL reaction, the concentrations of reactants comprising luminol, NaOH, and FeS2 NSs were optimized accordingly. The calibration curves demonstrated exceptional linearity within the concentration range spanning from 4.00 × 10-7 to 1.00 × 10-3 mol L-1, 1.00 × 10-7 to 1.00 × 10-4 mol L-1, and 4.00 × 10-6 to 2.00 × 10-4 mol L-1 with detection limits (3σ) of 3.54 × 10-7, 1.08 × 10-8, and 2.63 × 10-6 mol L-1 for VFX, IPM, and CEF, respectively. This study synthesized FeS2 NSs using a facile hydrothermal approach, and then the synthesized FeS2 NSs were subjected to a comprehensive characterization using a range of spectroscopic methods. The proposed CL method was effective in measuring the aforementioned pharmaceuticals in pharmaceutical formulations as well as different water samples. The mechanism of the CL system has been elucidated.


Assuntos
Cefazolina , Compostos Ferrosos , Imipramina , Medições Luminescentes , Luminol , Cloridrato de Venlafaxina , Cefazolina/análise , Cefazolina/química , Cloridrato de Venlafaxina/análise , Cloridrato de Venlafaxina/química , Imipramina/análise , Imipramina/química , Medições Luminescentes/métodos , Luminol/química , Nanoestruturas/química , Luminescência
2.
Eur J Pharmacol ; 969: 176434, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458412

RESUMO

BACKGROUND: Major depressive disorder (MDD) represents a challenge with high prevalence and limited effectiveness of existing treatments, particularly in cases of treatment-resistant depression (TRD). Innovative strategies and alternative drug targets are therefore necessary. Sildenafil, a selective phosphodiesterase type 5 (PDE5) inhibitor, is known to exert neuroplastic, anti-inflammatory, and antioxidant properties, and is a promising antidepressant drug candidate. AIM: To investigate whether sildenafil monotherapy or in combination with a known antidepressant, can elicit antidepressant-like effects in an adrenocorticotropic hormone (ACTH)-induced rodent model of TRD. METHODS: ACTH-naïve and ACTH-treated male Sprague-Dawley (SD) rats received various sub-acute drug treatments, followed by behavioural tests and biochemical analyses conversant with antidepressant actions. RESULTS: Sub-chronic ACTH treatment induced significant depressive-like behaviour in rats, evidenced by increased immobility during the forced swim test (FST). Sub-acute sildenafil (10 mg/kg) (SIL-10) (but not SIL-3), and combinations of imipramine (15 mg/kg) (IMI-15) and sildenafil (3 mg/kg) (SIL-3) or escitalopram (15 mg/kg) (ESC-15) and SIL-3, exhibited significant antidepressant-like effects. ACTH treatment significantly elevated hippocampal levels of brain-derived neurotrophic factor (BDNF), serotonin, norepinephrine, kynurenic acid (KYNUA), quinolinic acid (QUINA), and glutathione. The various mono- and combined treatments significantly reversed some of these changes, whereas IMI-15 + SIL-10 significantly increased glutathione disulfide levels. ESC-15 + SIL-3 significantly reduced plasma corticosterone levels. CONCLUSION: This study suggests that sildenafil shows promise as a treatment for TRD, either as a stand-alone therapy or in combination with a traditional antidepressant. The neurobiological mechanism underlying the antidepressant-like effects of the different sildenafil mono- and combination therapies reflects a multimodal action and cannot be explained in full by changes in the individually measured biomarker levels.


Assuntos
Transtorno Depressivo Maior , Imipramina , Masculino , Ratos , Animais , Escitalopram , Citrato de Sildenafila/farmacologia , Citrato de Sildenafila/uso terapêutico , Hormônio Adrenocorticotrópico , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Roedores , Transtorno Depressivo Maior/tratamento farmacológico , Ratos Sprague-Dawley , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Comportamento Animal
3.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474165

RESUMO

Cisplatin (CDDP) stands out as an effective chemotherapeutic agent; however, its application is linked to the development of significant adverse effects, notably nephro- and ototoxicity. The human organic cation transporter 2 (hOCT2), found in abundance in the basolateral membrane domain of renal proximal tubules and the Corti organ, plays a crucial role in the initiation of nephro- and ototoxicity associated with CDDP by facilitating its uptake in kidney and ear cells. Given its limited presence in cancer cells, hOCT2 emerges as a potential druggable target for mitigating unwanted toxicities associated with CDDP. Potential strategies for mitigating CDDP toxicities include competing with the uptake of CDDP by hOCT2 or inhibiting hOCT2 activity through rapid regulation mediated by specific signaling pathways. This study investigated the interaction between the already approved cationic drugs disopyramide, imipramine, and orphenadrine with hOCT2 that is stably expressed in human embryonic kidney cells. Regarding disopyramide, its influence on CDDP cellular transport by hOCT2 was further characterized through inductively coupled plasma isotope dilution mass spectrometry. Additionally, its potential protective effects against cellular toxicity induced by CDDP were assessed using a cytotoxicity test. Given that hOCT2 is typically expressed in the basolateral membrane of polarized cells, with specific regulatory mechanisms, this work studied the regulation of hOCT2 that is stably expressed in Madin-Darby Canine Kidney (MDCK) cells. These cells were cultured in a matrix to induce the formation of cysts, exposing hOCT2 in the basolateral plasma membrane domain, which was freely accessible to experimental solutions. The study specifically tested the regulation of ASP+ uptake by hOCT2 in MDCK cysts through the inhibition of casein kinase II (CKII), calmodulin, or p56lck tyrosine kinase. Furthermore, the impact of this manipulation on the cellular toxicity induced by CDDP was examined using a cytotoxicity test. All three drugs-disopyramide, imipramine, and orphenadrine-demonstrated inhibition of ASP+ uptake, with IC50 values in the micromolar (µM) range. Notably, disopyramide produced a significant reduction in the CDDP cellular toxicity and platinum cellular accumulation when co-incubated with CDDP. The activity of hOCT2 in MDCK cysts experienced a significant down-regulation under inhibition of CKII, calmodulin, or p56lck tyrosine kinase. Interestingly, only the inhibition of p56lck tyrosine kinase demonstrated the capability to protect the cells against CDDP toxicity. In conclusion, certain interventions targeting hOCT2 have demonstrated the ability to reduce CDDP cytotoxicity, at least in vitro. Further investigations in in vivo systems are warranted to ascertain their potential applicability as co-treatments for mitigating undesired toxicities associated with CDDP in patients.


Assuntos
Cistos , Ototoxicidade , Humanos , Animais , Cães , Transportador 2 de Cátion Orgânico , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Cisplatino/metabolismo , Disopiramida , Calmodulina/metabolismo , Imipramina , Orfenadrina , Células Madin Darby de Rim Canino , Proteínas Tirosina Quinases/metabolismo
4.
World J Biol Psychiatry ; 25(3): 200-213, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38349617

RESUMO

OBJECTIVES: This study sought to identify pathways affected by rat cortical RNA that were changed after treatment with fluoxetine or imipramine. METHODS: We measured levels of cortical RNA in male rats using GeneChip® Rat Exon 1.0 ST Array after treatment with vehicle (0.9% NaCl), fluoxetine (10 mg/kg/day) or imipramine (20 mg/kg/day) for 28 days. Levels of coding and non-coding RNA in vehicle treated rats were compared to those in treated rats using ANOVA in JMP Genomics 13 and the Panther Gene Ontology Classification System was used to identify pathways involving the changed RNAs. RESULTS: 18,876 transcripts were detected; there were highly correlated changes in 1010 levels of RNA after both drug treatments that would principally affect the metabolism of polyamines, mRNA splicing, regulation of RAS by GAPs, neddylation and GPCR ligand binding. Using our previously published data, we compared changes in transcripts after treatment with antipsychotic and mood stabilising drugs. CONCLUSIONS: Our study shows there are common, correlated, changes in coding and non-coding RNA in the rat cortex after treatment with fluoxetine or imipramine; we propose the pathways affected by these changes are involved in the therapeutic mechanisms of action of antidepressant drugs.


Assuntos
Fluoxetina , Imipramina , Ratos , Masculino , Animais , Fluoxetina/farmacologia , Imipramina/farmacologia , Ligantes , Poliaminas , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G , Antidepressivos/farmacologia , Expressão Gênica , RNA , RNA Mensageiro , RNA não Traduzido
5.
J Affect Disord ; 351: 128-142, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280571

RESUMO

BACKGROUND: Bipolar disorder (BD) is a highly burdensome psychiatric disorder characterized by alternating states of mania and depression. A major challenge in the clinic is the switch from depression to mania, which is often observed in female BD patients during antidepressant treatment such as imipramine. However, the underlying neural basis is unclear. METHODS: To investigate the potential neuronal pathways, serotonin transporter knockout (SERT KO) rats, an experimental model of female BD patients, were subjected to a battery of behavioral tests under chronic treatment of the antidepressant imipramine. In addition, the expression of brain-derived neurotrophic factor (BDNF) and its downstream signaling was examined in the prefrontal cortex. RESULTS: Chronic exposure to imipramine reduced anxiety and sociability and problem-solving capacity, and increased thigmotaxis and day/night activity in all animals, but specifically in female SERT KO rats, compared to female wild-type (WT) rats. Further, we found an activation of BDNF-TrkB-Akt pathway signaling in the infralimbic, but not prelimbic, cortex after chronic imipramine treatment in SERT KO, but not WT, rats. LIMITATIONS: Repeated testing behaviors could potentially affect the results. Additionally, the imipramine induced changes in behavior and in the BDNF system were measured in separate animals. CONCLUSIONS: Our study indicates that female SERT KO rats, which mirror the female BD patients with the 5-HTTLPR s-allele, are at higher risk of a switch to mania-like behaviors under imipramine treatment. Activation of the BDNF-TrkB-Akt pathway in the infralimbic cortex might contribute to this phenotype, but causal evidence remains to be provided.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Imipramina , Humanos , Ratos , Feminino , Animais , Imipramina/farmacologia , Imipramina/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Mania/metabolismo , Depressão , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antidepressivos/farmacologia , Hipocampo/metabolismo
6.
Neuropeptides ; 104: 102409, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38244260

RESUMO

N-methyl-D-aspartic acid receptors (NMDARs) are the most studied receptors in mammalian brains. Their role in depression, cognition, schizophrenia, learning and memorization, Alzheimer's disease, and more is well documented. In the search for new drug candidates in depression, intensive studies have been conducted. Compounds that act by influencing NMDARs have been particularly intensively investigated following the success of ketamine in clinics. Unfortunately, the side effects associated with ketamine do not allow it to be useful in all cases. Therefore, it is important to learn about new unknown mechanisms related to NMDAR activation and study the impact of changes in the excitatory synapse environment on this receptor. Both direct and intermediary influence on NMDARs via mGluRs and COX-2 are effective. Our prior studies showed that both mGluRs ligands and COX-2 inhibitors are potent in depression-like and cognitive studies through mutual interactions. The side effects associated with imipramine administration, e.g., memory impairment, were improved when inhibiting COX-2. Therefore, this study is a trial that involves searching for modifications in NMDARs in mouse brains after prolonged treatment with MTEP (mGluR5 antagonist), NS398 (COX-2 inhibitor), or imipramine (tricyclic antidepressant). The prefrontal cortex (PFC) and hippocampus (HC) were selected for PCR and Western blot analyses. Altered expression of Gin2a or Grin2b genes after treatment was found. The observed effects were more potent when COX-2 was inhibited. The finding described here may be vital when searching for new drugs acting via NMDARs without the side effects related to cognition.


Assuntos
Ketamina , Camundongos , Animais , Ciclo-Oxigenase 2/metabolismo , Ketamina/farmacologia , Imipramina/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Hipocampo , Mamíferos/metabolismo
7.
Gen Hosp Psychiatry ; 86: 118-126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38199136

RESUMO

BACKGROUND: Major depressive disorder (MDD) is an intractable disease requiring long-term treatment. S-adenosyl-L-methionine (SAMe), a natural substance, has antidepressant effects, but the exact effect remains unclear. This study examines the evidence concerning the efficacy of SAMe as a monotherapy or in combination with antidepressants. METHODS: The PubMed, EMBASE, and Cochrane electronic databases were searched for meta-analyses of randomized controlled clinical trials (RCTs) until June 30, 2023. We performed a systematic review and meta-analysis of the enrolled trials that met the inclusion criteria, with the aim to compare the effects of SAMe to those of a placebo or active agents, or SAMe combined with other antidepressants in the treatment of MDD. RESULTS: Fourteen trials, with a total of 1522 subjects, were included in this review. The daily dose of SAMe varied from 200 to 3200 mg and the study duration ranged between 2 and 12 weeks. The results of SAMe versus placebo as a monotherapy, SAMe versus imipramine or escitalopram as a monotherapy, and SAMe versus placebo as an adjunctive therapy, showed no significant difference in depression with SAMe compared to the comparison treatment. CONCLUSIONS: SAMe may provide relief of depression symptoms similar to imipramine or escitalopram. However, the results of the comparisons should be interpreted with caution due to the small number of studies and the large range of SAMe doses that were used in the included trials. Therefore, we recommend that patients discuss treatment options with their doctor before taking SAMe.


Assuntos
Depressão , Transtorno Depressivo Maior , Humanos , Depressão/tratamento farmacológico , Imipramina/uso terapêutico , S-Adenosilmetionina/farmacologia , S-Adenosilmetionina/uso terapêutico , Escitalopram , Antidepressivos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico
8.
Int Immunopharmacol ; 126: 111179, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37995569

RESUMO

Nephrotoxicity is a serious complication commonly encountered with gentamicin (GTM) treatment. Permeabilization of lysosomes with subsequent cytoplasmic release of GTM and cathepsins is considered a crucial issue in progression of GTM toxicity. This study was designed to evaluate the prospective defensive effect of lysosomal membrane stabilization by imipramine (IMP) against GTM nephrotoxicity in rats. GTM (30 mg/kg/h) was intraperitoneally administered over 4 h daily (120 mg/kg/day) for 7 days. IMP (30 mg/kg/day) was orally administered for 14 days; starting 7 days before and then concurrently with GTM. On 15th day, samples (urine, blood, kidney) were collected to estimate biomarkers of kidney function, lysosomal stability, apoptosis, and inflammation. IMP administration to GTM-treated rats ameliorated the disruption in lysosomal membrane stability induced by GTM. That was evidenced by enhanced renal protein expressions of LAMP2 and PI3K, but reduced cathepsin D cytoplasmic expression in kidney sections. Besides, IMP guarded against apoptosis in GTM-treated rats by down-regulation of the pro-apoptotic (tBid, Bax, cytochrome c) and the effector cleaved caspase-3 expressions, while the anti-apoptotic Bcl-2 expression was enhanced. Additionally, the inflammatory cascade p38 MAPK/NF-κB/TNF-α was attenuated in GTM + IMP group along with marked improvement in kidney function biomarkers, compared to GTM group. These findings were supported by the obvious improvement in histological architecture. Furthermore, in vitro enhancement of the antibacterial activity of GTM by IMP confers an additional benefit to their combination. Conclusively, lysosomal membrane stabilization by IMP with subsequent suppression of tBid/cytochrome c/cleaved caspase-3 apoptotic signaling could be a promising protective strategy against GTM nephrotoxicity.


Assuntos
Citocromos c , Imipramina , Ratos , Animais , Citocromos c/metabolismo , Imipramina/farmacologia , Gentamicinas , Caspase 3/metabolismo , Catepsina D , Regulação para Baixo , Estudos Prospectivos , Rim/patologia , Apoptose , Lisossomos/metabolismo , Biomarcadores/metabolismo , Estresse Oxidativo
9.
J Ethnopharmacol ; 321: 117489, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38012973

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Litsea glaucescens K. (Lauraceae) is a small tree from the Mexican and Central American temperate forests, named as "Laurel". Its aromatic leaves are ordinarily consumed as condiments, but also are important in Mexican Traditional Medicine, and among the most important non wood forest products in this area. The leaves are currently used in a decoction for the relief of sadness by the Mazahua ethnic group. Interestingly, "Laurel" has a long history. It was named as "Ehecapahtli" (wind medicine) in pre-Columbian times and applied to heal maladies correlated to the Central Nervous System, among them depression, according to botanical texts written in the American Continent almost five centuries ago. AIM OF THE STUDY: Depression is the first cause of incapacity in the world, and society demands alternative treatments, including aromatherapy. We have previously demonstrated the antidepressant-like activity of L. glaucescens leaves' essential oil (LEO), as well as their monoterpenes linalool, and beta-pinene by intraperitoneal route in a mice behavioral model. Here we now examined if LEO and linalool exhibit this property and anxiolytic activity when administered to mice by inhalation. We also investigated if these effects occur by BDNF pathway activation in the brain. MATERIALS AND METHODS: The LEO was prepared by distillation with water steam and analyzed by gas chromatography-mass spectrometry (GC-MS). The monoterpenes linalool, eucalyptol and ß-pinene were identified and quantified. Antidepressant type properties were determined with the Forced Swim Test (FST) on mice previously exposed to LEO or linalool in an inhalation chamber. The spontaneous locomotor activity and the sedative effect were assessed with the Open Field Test (OFT), and the Exploratory Cylinder (EC), respectively. The anxiolytic properties were investigated with the Elevated Plus Maze Apparatus (EPM) and the Hole Board Test (HBT). All experiments were video documented. The mice were subjected to euthanasia, and the brain hippocampus and prefrontal cortex were dissected. RESULTS: The L. glaucescens essential oil (LEO) contains 31 compounds according to GC/MS, including eucalyptol, linalool and beta-pinene. The LEO has anxiolytic effect by inhalation in mice, as well as linalool, and ß-pinene, as indicated by OFT and EC tests. The LEO and imipramine have antidepressant like activity in mice as revealed by the FST; however, linalool and ketamine treatments didn't modify the time of immobility. The BDNF was increased in FST in mice treated with LEO in both areas of the brain as revealed by Western blot; but did not decrease the level of corticosterone in plasma. The OFT indicated that LEO and imipramine didn't reduce the spontaneous motor activity, while linalool and ketamine caused a significant decrease. CONCLUSION: Here we report by the first time that L. glaucescens leaves essential oil has anxiolytic effect by inhalation in mice, as well as linalool, and ß-pinene. This oil also maintains its antidepressant-like activity by this administration way, similarly to the previously determined intraperitoneally. Since inhalation is a common administration route for humans, our results suggest L. glaucescens essential oil deserve future investigation due to its potential application in aromatherapy.


Assuntos
Ansiolíticos , Ketamina , Lauraceae , Litsea , Óleos Voláteis , Humanos , Camundongos , Animais , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Óleos Voláteis/química , Fator Neurotrófico Derivado do Encéfalo , Imipramina/farmacologia , Eucaliptol/farmacologia , Ketamina/farmacologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/química , Monoterpenos/farmacologia , Comportamento Animal
10.
J Cutan Pathol ; 51(2): 105-107, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37818708

RESUMO

Imipramine is a tricyclic antidepressant typically reserved for patients with treatment-resistant mood disorders. A rare side effect of long-term use of imipramine is a slowly progressive melanin-associated, slate gray-blue hyperpigmentation of the skin in a photo-distributed pattern. We report a case of imipramine-induced hyperpigmentation developing 50 years after initiating imipramine therapy, whose lesions were essentially devoid of melanin on histopathological exam. This differs from all other reported cases of imipramine-induced hyperpigmentation in two notable respects. First, the time between initiating imipramine therapy and the onset of pigmentation changes was nearly 30 years longer than prior case reports. Second, the lack of melanin in our samples suggests a divergence from the hypothesized melanin-imipramine complex mechanism of hyperpigmentation. Instead, we propose a novel pathogenesis of imipramine-induced hyperpigmentation that is unrelated to melanin.


Assuntos
Hiperpigmentação , Imipramina , Humanos , Imipramina/efeitos adversos , Melaninas , Hiperpigmentação/induzido quimicamente , Hiperpigmentação/patologia , Antidepressivos Tricíclicos/efeitos adversos , Pele/patologia
11.
Colloids Surf B Biointerfaces ; 234: 113688, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128360

RESUMO

HYPOTHESIS: The antidepressant drug imipramine, and its metabolite desipramine show different extents of interaction with, and passive permeation through, cellular membrane models, with the effects depending on the membrane composition. Through multimodal interrogation, we can observe that the drugs have a direct impact on the physicochemical properties of the membrane, that may play a role in their pharmacokinetics. EXPERIMENTS: Microcavity pore-suspended lipid bilayers (MSLBs) of four different compositions, each with a different headgroup charge namely; zwitterionic dioleoylphosphatidylcholine (DOPC), mixed DOPC and negatively charged dioleoylphosphatidylglycerol (DOPG) (3:1), mixed DOPC and positively charged dioleoyltrimethylammoniumpropane (DOTAP) (3:1), and with increasing complex composition mimicking blood-brain-barrier (BBB) were prepared on gold and polydimethylsiloxane (PDMS) substrates using a Langmuir-Blodgett-vesicle fusion method. The molecular interaction and permeation of antidepressants, imipramine, and its metabolite desipramine with the lipid bilayers were evaluated using highly sensitive label-free electrochemical impedance spectroscopy (EIS) and surface-enhanced Raman spectroscopy (SERS). Drug-induced membrane packing/fluidity alterations were assessed using fluorescence lifetime imaging (FLIM) and fluorescence lifetime correlation spectroscopy (FLCS) of MSLB over microfluidic PDMS array. FINDINGS: Using EIS to evaluate in real-time membrane admittance changes, we found that imipramine greatly increases the ion permeability of negatively charged DOPC:DOPG (3:1) membranes. The effect was observed also at neutral (DOPC) and to a lesser extent at positively charged DOPC:DOTAP(3:1) membranes. In contrast, desipramine had a much weaker impact on ion permeability across all bilayer compositions. Temporal capacitance data show that desipramine intercalates at negatively charged membrane thereby increasing the thickness of the membrane. The overall kinetics of the imipramine permeation is higher than that of desipramine. This was confirmed using SERS, which also provides an evaluation of drug passive permeation based on arrival time across the membrane. Using FLCS, we found that imipramine increases the lipid membrane fluidity, whereas desipramine lowers it, with the exception of the negatively charged membrane. A translocation rate pharmacokinetics model was established for the first time at the MSLB platform by real-time monitoring of the variation in membrane resistance of pristine DOPC and blood-brain-barrier (BBB) membrane.


Assuntos
Ácidos Graxos Monoinsaturados , Imipramina , Bicamadas Lipídicas , Compostos de Amônio Quaternário , Bicamadas Lipídicas/química , Desipramina , Fosfatidilcolinas/química , Antidepressivos , Permeabilidade
12.
Biomolecules ; 13(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38136603

RESUMO

Lysosomes are degradative organelles that facilitate the removal and recycling of potentially cytotoxic materials and mediate a variety of other cellular processes, such as nutrient sensing, intracellular signaling, and lipid metabolism. Due to these central roles, lysosome dysfunction can lead to deleterious outcomes, including the accumulation of cytotoxic material, inflammation, and cell death. We previously reported that cationic amphiphilic drugs, such as imipramine, alter pH and lipid metabolism within macrophage lysosomes. Therefore, the ability for imipramine to induce changes to the lipid content of isolated macrophage lysosomes was investigated, focusing on sphingomyelin, cholesterol, and glycerophospholipid metabolism as these lipid classes have important roles in inflammation and disease. The lysosomes were isolated from control and imipramine-treated macrophages using density gradient ultracentrifugation, and mass spectrometry was used to measure the changes in their lipid composition. An unsupervised hierarchical cluster analysis revealed a clear differentiation between the imipramine-treated and control lysosomes. There was a significant overall increase in the abundance of specific lipids mostly composed of cholesterol esters, sphingomyelins, and phosphatidylcholines, while lysophosphatidylcholines and ceramides were overall decreased. These results support the conclusion that imipramine's ability to change the lysosomal pH inhibits multiple pH-sensitive enzymes in macrophage lysosomes.


Assuntos
Imipramina , Esfingomielinas , Humanos , Esfingomielinas/metabolismo , Imipramina/farmacologia , Colesterol/metabolismo , Macrófagos/metabolismo , Lisossomos/metabolismo , Inflamação/metabolismo , Metabolismo dos Lipídeos , Glicerofosfolipídeos/metabolismo
13.
PLoS One ; 18(11): e0294904, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38019810

RESUMO

Profiling the variability related to the estrous cycle is essential for assessing depressive-like behavior and screening drugs. This study compares circulating plasma corticosterone levels [CORT] and behavioral alterations in mice exposed to sucrose preference, forced swimming, and tail suspension tests (SPT, FST, and TST, respectively). While SPT exposure did not significantly alter [CORT], FST and TST showed notable changes. Mice in the TST exhibited increased movement and decreased immobility time compared to FST, suggesting a lower likelihood of depressive-like behavior in male mice. Notably, during the proestrus phase, female mice displayed the highest tendency for depressive-like behavior and elevated [CORT], but similar response to antidepressants (imipramine and fluoxetine). The inherent stress of the FST and TST tasks appears to influence [CORT] as well as depressant and antidepressant effects. These comparisons provide valuable insights for further behavioral phenotyping, model sensitivity assessment, and deepen our neurobiological understanding of depression in the context of drug screening.


Assuntos
Antidepressivos , Fluoxetina , Camundongos , Masculino , Feminino , Animais , Antidepressivos/farmacologia , Fluoxetina/farmacologia , Depressão/tratamento farmacológico , Imipramina/farmacologia , Comportamento Animal , Natação , Modelos Animais de Doenças , Corticosterona , Elevação dos Membros Posteriores
14.
J Biol Chem ; 299(12): 105391, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37898402

RESUMO

Ether-a-go-go (EAG) channels are key regulators of neuronal excitability and tumorigenesis. EAG channels contain an N-terminal Per-Arnt-Sim (PAS) domain that can regulate currents from EAG channels by binding small molecules. The molecular mechanism of this regulation is not clear. Using surface plasmon resonance and electrophysiology we show that a small molecule ligand imipramine can bind to the PAS domain of EAG1 channels and inhibit EAG1 currents via this binding. We further used a combination of molecular dynamics (MD) simulations, electrophysiology, and mutagenesis to investigate the molecular mechanism of EAG1 current inhibition by imipramine binding to the PAS domain. We found that Tyr71, located at the entrance to the PAS domain cavity, serves as a "gatekeeper" limiting access of imipramine to the cavity. MD simulations indicate that the hydrophobic electrostatic profile of the cavity facilitates imipramine binding and in silico mutations of hydrophobic cavity-lining residues to negatively charged glutamates decreased imipramine binding. Probing the PAS domain cavity-lining residues with site-directed mutagenesis, guided by MD simulations, identified D39 and R84 as residues essential for the EAG1 channel inhibition by imipramine binding to the PAS domain. Taken together, our study identified specific residues in the PAS domain that could increase or decrease EAG1 current inhibition by imipramine binding to the PAS domain. These findings should further the understanding of molecular mechanisms of EAG1 channel regulation by ligands and facilitate the development of therapeutic agents targeting these channels.


Assuntos
Canais de Potássio Éter-A-Go-Go , Imipramina , Fenômenos Eletrofisiológicos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/genética , Imipramina/química , Imipramina/farmacologia , Ligação Proteica , Animais , Domínios Proteicos , Camundongos , Xenopus
15.
PLoS One ; 18(10): e0292816, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37824495

RESUMO

The forced swim test (FST) is a traditional assay, which has been used for more than 40 years to assess antidepressant effects of novel drug candidates. In recent years, a debate about the test has focused on the assumption that the FST is highly aversive and burdening for the animals because of the earlier anthropomorphic interpretation and designation as a "behavioral despair test". The Directive 2010/63/EU and the German Animal Welfare law require a prospective severity classification of the planned experimental procedures. Still, an objective examination of the animals' burden in this test has not been performed yet. To fill this gap, we conducted an evidence-based severity assessment of the forced swim test in rats according to a 'standard protocol' with a water temperature of 25°C. We examined parameters representing the physiological and the affective state, and natural as well as locomotion-associated behaviors in three separate experiments to reflect as many dimensions as possible of the animal's condition in the test. Hypothermia was the only effect observed in all animals exposed to the FST when using this standard protocol. Additional adverse effects on body weight, food consumption, and fecal corticosterone metabolite concentrations occurred in response to administration of the antidepressant imipramine, which is frequently used as positive control when testing for antidepressant effects of new substances. We conclude that this version of the FST itself is less severe for the animals than assumed, and we suggest a severity classification of 'moderate' because of the acute and short-lasting effects of hypothermia. To refine the FST according to the 3Rs, we encourage confirming the predictive validity in warmer water temperatures to allow the rats to maintain physiological body temperature.


Assuntos
Hipotermia , Ratos , Animais , Estudos Prospectivos , Antidepressivos/farmacologia , Imipramina/farmacologia , Natação , Água/farmacologia , Comportamento Animal/fisiologia
16.
Croat Med J ; 64(4): 231-242, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37654035

RESUMO

AIM: To assess the protective effects of goji berry (Lycium barbarum L.) polysaccharides (LBP) on depression-like behavior in ovariectomized rats and to elucidate the mechanisms underlying these effects. METHODS: One hundred female Wistar albino rats (three months old) were randomly assigned either to ovariectomy (n=50) or sham surgery (n=50). After a 14-day recovery period, the groups were divided into five treatment subgroups (10 per group): high-dose LBP (200 mg/kg), low-dose LBP (20 mg/kg), imipramine (IMP, 2.5 mg/kg), 17-beta estradiol (E2, 1 mg/kg), and distilled water. Then, rats underwent a forced swimming test. We also determined the levels of serum antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and malondialdehyde), E2 levels, hippocampal brain-derived neurotrophic factor (BDNF), 5HT2A receptor, and transferase dUTP nick end labeling (TUNEL)-positive cells. RESULTS: Both low-dose LBP and imipramine decreased depression-like behavior by increasing serum superoxide dismutase activity and by decreasing serum malondialdehyde level. Furthermore, low-dose LPB, high-dose LBP, and imipramine increased the number of 5-HT2A receptor- and BDNF-positive cells but decreased the number of TUNEL-positive cells in the hippocampus. CONCLUSION: This is the first study to show the antidepressant effect of LBP. Although additional research is needed, LBP may be considered a potential new antidepressant.


Assuntos
Lycium , Fármacos Neuroprotetores , Feminino , Ratos , Animais , Fármacos Neuroprotetores/farmacologia , Ratos Wistar , Fator Neurotrófico Derivado do Encéfalo , Imipramina/farmacologia , Depressão/tratamento farmacológico , Depressão/prevenção & controle , Polissacarídeos/farmacologia , Malondialdeído
17.
J Sep Sci ; 46(21): e2300323, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37691072

RESUMO

This study introduces a reliable and inexpensive magnetic dispersive solid phase extraction to extract imipramine and its primary metabolite (desipramine) from urine samples. To accomplish this aim, Fe3 O4 magnetic nanoparticles were synthesized by sonication, subsequently, polycarbonate was precipitated gradually onto the surface of them to form the adsorbent. Extraction recoveries of 85% and 76%, enrichment factors of 57 and 51, limits of detection of 2.5 and 2.8 µg/L, and limits of quantification of 8.3 and 9.3 µg/L were obtained for imipramine and desipramine under the optimal conditions, respectively. In addition, relative standard deviations for intra- (n = 6) and inter-day (n = 5) precisions at two concentrations (50 and 100 µg/L of each analyte) were less than or equal to 4%. Short extraction time, good repeatability, high enrichment factors, and simplicity are the main advantages of the proposed method.


Assuntos
Imipramina , Nanopartículas de Magnetita , Desipramina , Extração em Fase Sólida , Cromatografia Líquida de Alta Pressão , Fenômenos Magnéticos
18.
Anticancer Res ; 43(9): 3987-3996, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648317

RESUMO

BACKGROUND/AIM: Oral squamous cell carcinoma (OSCC) has limited treatment options. This study investigated imipramine, a tricyclic antidepressant, as a potential therapy for OSCC using a SAS-bearing xenograft animal model. MATERIALS AND METHODS: The SAS-bearing xenograft model evaluated imipramine's impact on tumor growth. The control group received no treatment, while the imipramine-treated group received regular doses. Tumor growth, confirmed by imaging, and histological analysis assessed size and weight. Imipramine's effects on apoptosis, epithelial-to-mesenchymal transition (EMT), and transcription factors (AKT, ERK, STAT3) were analyzed. RESULTS: Imipramine significantly suppressed tumor growth within 6 days of treatment, with sustained activity. Computer tomography (CT) scans and histology confirmed reduced size and weight by imipramine. Imipramine induced apoptosis via caspase-dependent/-independent pathways, inhibited EMT, and down-regulated phosphorylated AKT, ERK, and STAT3. CONCLUSION: Imipramine shows promise as an effective OSCC therapy, inhibiting tumor growth, inducing apoptosis, and inhibiting EMT. Its impact on transcription factors and modulation of the AKT/ERK/STAT3 pathway suggest a multifaceted approach.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/tratamento farmacológico , Imipramina/farmacologia , Proteínas Proto-Oncogênicas c-akt , Apoptose , Sistema de Sinalização das MAP Quinases , Modelos Animais de Doenças
19.
Acta Neuropathol Commun ; 11(1): 135, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605262

RESUMO

In Alzheimer's disease (AD), reactive astrocytes produce extracellular vesicles (EVs) that affect mitochondria in neurons. Here, we show that Aß-induced generation of the sphingolipid ceramide by acid sphingomyelinase (A-SMase) triggered proinflammatory cytokine (C1q, TNF-α, IL-1α) release by microglia, which induced the reactive astrocytes phenotype and secretion of EVs enriched with ceramide. These EVs impeded the capacity of neurons to respond to energy demand. Inhibition of A-SMase with Arc39 and Imipramine reduced the secretion of cytokines from microglia, prompting us to test the effect of Imipramine on EV secretion and AD pathology in the 5xFAD mouse model. Brain derived-EVs from 5xFAD mice treated with Imipramine contained reduced levels of the astrocytic marker GFAP, ceramide, and Aß and did not impair mitochondrial respiration when compared to EVs derived from untreated 5xFAD brain. Consistently, Imipramine-treated 5xFAD mice showed reduced AD pathology. Our study identifies A-SMase inhibitors as potential AD therapy by preventing cyotokine-elicited secretion of mitotoxic EVs from astrocytes.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Astrócitos , Esfingomielina Fosfodiesterase , Imipramina/farmacologia , Ceramidas
20.
Am J Case Rep ; 24: e939884, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37542369

RESUMO

BACKGROUND Tricyclic antidepressant (TCA) drugs are a common cause of fatal poisoning because of their cardiotoxic and arrhythmogenic effects. Classic supportive management includes sodium bicarbonate, gastrointestinal chelating agents, and vasopressors. Recently, intravenous lipid emulsion (supported by a low evidence level) has also been used. CASE REPORT We report the case of a 55-year-old woman admitted to our Intensive Care Unit (ICU) with acute imipramine self-poisoning. She arrived at the emergency department 7 hours after imipramine ingestion; she had severe rhabdomyolysis upon admission, with creatine phosphokinase levels at about 52 500 IU/L (normal, <200 IU/L). She quickly developed cardiogenic shock and malign arrhythmia requiring veno-arterial extra corporeal membrane oxygenation (VA-ECMO). Continuous renal replacement therapy (CRRT) with CytoSorb® (CytoSorbents, Monmouth Junction, New York, United Sates of America) was started 19 hours after admission. We performed serial blood measurements of imipramine and its active metabolite desipramine as well as viewing the levels on the CRRT-circuit monitor. Cardiac function improved and ECMO was explanted after 4 days. She also had severe acute respiratory distress syndrome, which resolved spontaneously. The neurologic outcome was favorable despite early myoclonus. The patient regained consciousness on the fifth day. Her clinical evolution was marked by acute ischemia of the lower left limb due to the arterial ECMO cannula. CONCLUSIONS These measurements document the efficacy of the CytoSorb® adsorber in removing a lipophilic drug from a patient's bloodstream. To our knowledge, this is the first published case of CytoSorb® extracorporeal blood purification therapy for acute TCA poisoning.


Assuntos
Oxigenação por Membrana Extracorpórea , Choque Cardiogênico , Feminino , Humanos , Pessoa de Meia-Idade , Choque Cardiogênico/induzido quimicamente , Choque Cardiogênico/terapia , Antidepressivos Tricíclicos , Imipramina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...